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Abstract

This work addresses the issue of better considering the heterogeneity of precipita-
tion fields within lumped rainfall-runoff models where only areal mean precipitation is
usually used as an input. A method using a Kohonen neural network is proposed
for the classification of precipitation fields. The evaluation and improvement of the5

performance of a lumped rainfall-runoff model for one-day ahead predictions is then
established based on this classification. Multilayer perceptron neural networks are
employed as lumped rainfall-runoff models. The Bas-en-Basset watershed in France,
which is equipped with 23 rain gauges with data for a 21-year period, is employed as
the application case. The results demonstrate the relevance of the proposed classifi-10

cation method, which produces groups of precipitation fields that are in agreement with
the global climatological features affecting the region, as well as with the topographic
constraints of the watershed (i.e., orography). The strengths and weaknesses of the
rainfall-runoff models are highlighted by the analysis of their performance vis-à-vis the
classification of precipitation fields. The results also show the capability of multilayer15

perceptron neural networks to account for the heterogeneity of precipitation, even when
built as lumped rainfall-runoff models.

1 Introduction

Lumped rainfall-runoff models, as opposed to distributed ones, continue to constitute
a viable solution for the operational needs of estimating flows in watersheds. They20

are inexpensive, are relatively easy to operate, have low computing requirements, and
can provide quick and reasonably accurate estimations at the watershed outlet. Such
models are expected to be widely used well into the future. This paper proposes a
method to better analyze one of the shortfalls of lumped hydrological models, which is
that heterogeneous precipitation over a watershed cannot not be considered. Indeed,25

only the mean areal precipitation is usually considered as an input to lumped models,
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unless a specific subdivision of the watershed can be made and accommodated by
the model. In their review of rainfall-runoff models, Singh and Woolhiser (2002) stress
the effect of the spatial variability of precipitation on the production of streamflow in a
watershed, and this effect has been a long standing issue in hydrology as demonstrated
in the work of Naden (1992), and Faures et al. (1995). Dawdy and Bergman (1969),5

and Wilson et al. (1979) indicate that errors in the estimation of rainfall intensity are
very likely to limit the accuracy of rainfall-runoff models, and this would be particularly
prevalent for lumped models.

This study involves the use of a classification algorithm based on the Kohonen neu-
ral network for discriminating daily precipitation fields in a watershed into coherent10

groups. The performance of lumped multilayer perceptron neural network models for
the estimation of streamflow on this watershed is afterward assessed with respect to
each of the identified groups of precipitation fields. Through this work, three issues
are addressed: 1) the relevance of the classification algorithm for the discrimination
of precipitation fields from day to day, 2) the value of evaluating the performance of15

rainfall-runoff models with respect to precipitation field groups, and 3) the possibility of
improving rainfall-runoff modelling performance through more specific identification of
inputs as highlighted by the classification.

In terms of precipitation field classification, any form of clustering technique may
be appropriate. For meteorological data in general, and for precipitation in particu-20

lar, there is a large range of classification algorithms that have been employed. The
simplest cases involve subjective inferences based on observations on synoptic maps
(Bardossy and Plate, 1992; Siew-Yan-Yu et al., 1998). More objective methods nor-
mally include one simple discrimination rule such as the Euclidian distance between
the features of two events (Shoof and Pryor, 2001) or a probabilistic criterion (Benzie25

et al., 1997). The level of objectivity can then be increased by including several dis-
crimination rules, as is the case with the Classification and Regression Trees (CART)
employed by Hughes et al. (1993), Zorita et al. (1995), and Shnur and Lettenmaier
(1998). For the assignation of rules, the work of Bardossy et al. (1994) and Ozelkan
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et al. (1996) make use of fuzzy logic, which is an alternative to classification methods
with fixed rules. Even the most objective methods contain some level of subjectivity that
may induce some uncertainty on the validity of the generated classification. It must be
noted as well that computing requirements increase as the number of rules increases,
particularly with large databases (Zorita and Storch, 1999). The Kohonen neural net-5

work employed as the classification algorithm in this study possesses some amount of
subjectivity. However, its process for the determination of classes (i.e., calibration) may
be less demanding in terms of computing requirements than more traditional and com-
mon classification techniques, such as those presented in Dillon and Goldstein (1984),
as shown for a large classification study by Lauzon (2003).10

Multilayer perceptron neural networks are employed here as rainfall-runoff models.
They have been widely acknowledged as being appropriate for rainfall-runoff modelling
(ASCE, 2000a and b; Singh and Woolhiser, 2002), and such lumped models are easy
to build and implement on an operational basis. They are employed here for one-day
ahead streamflow forecasts.15

The selection of an appropriate study watershed is essential to achieve the objectives
of this work. In order to produce variability in the areal precipitation estimates, the
watershed must have heterogeneous precipitation fields. For the same reason, the
rain gauge network must include a large number of stations. Finally, the watershed
must be selected so that forecasting uncertainties are mainly due to precipitation.20

In the following section of this paper, a brief description of the Kohonen and multi-
layer perceptron neural networks, used for the classification of precipitation fields and
rainfall-runoff modelling, is given. In subsequent sections, the context of application,
including the description of the Bas-en-Basset (France) watershed and its database,
as well as the details on the experimental protocol, is presented. This is followed by25

the analysis of the results, with an emphasis on the issues of interest: 1) the relevance
of the classification algortithm, 2) the analysis in rainfall-runoff modelling performance
based on the classification, and 3) the improvement of modelling performance. Finally,
a conclusion highlighting the relevant findings is presented.
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2 Description of the neural networks

2.1 Descriptive neural networks

The structure of a Kohonen neural network is designed so as to identify patterns in
data, as with multivariate statistical clustering techniques. This network is therefore
a descriptive tool that is used increasingly in hydrology and water resources, in ap-5

plications such as the classification of watershed conditions (Liong et al., 2000); the
determination of hydrological homogeneous regions (Hall and Minns, 1999); the iden-
tification of river pollutant sources (Gotz et al., 1998); and the study of algae bloom
(Bowden et al., 2002). The network is made of an input layer of neurons that receives
the data and an output layer, often structured in a planar surface, as depicted in Fig. 1.10

The weight vector of each output neuron is of the same scale as the input, and conse-
quently can be considered as a mass center of a class. Each output neuron is thus the
equivalent of a class, and it is said to be activated when its weight vector is the closest
in distance to the input vector given to the network.

The elements of all the weight vectors must be calibrated so as to cover the whole15

data domain. The calibration is an iterative process, where one input vector is fed to
the network at every iteration. Following the feeding of an input vector I at a given
iteration, the weight vector (Wj ) of each of the output neurons is updated as follows
(Kohonen, 1990):

W (t)
j = W (t−1)

j + hj

(
I −W (t−1)

j

)
(1)20

This formulation simply drives the weight vector to be closer to the input vector, where
hj is expressed in this application as:

hj = h0 exp
(
−
(
dj,a/σ

)2
)

(2)

In this expression, dj,a is the distance between the most suitable output neuron (a)
and another output neuron j as determined on the output map (layer). When j=a, the25
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exponential equals 1 and the value of hj is at its maximum value (h0). The value of hj
decreases as the distance between activated neuron a and neuron j increases. Pa-
rameter h0 gives the magnitude of the updating, while parameter σ is a scaling factor
on the distance, and indicates the extent of the output map affected by the updating.
Both parameters are set at a high value at the start of the calibration process to ensure5

a rapid spreading of the output neurons over the data domain, and are reduced gradu-
ally so that only small adjustments are performed at the end of the calibration process.
A large number of iterations ensures that all input vectors are employed a significant
number of times on the average at all times of the calibration process.

The calibration process ensures that all the patterns present in the data are defined10

in a meaningful coordinate system, and this is why the Kohonen neural network is often
called a self-organized map. The Kohonen neural network reduces the dimension of a
problem, from an n-dimension input vector to 2-dimension solution, so as to produce a
clearer view of the data patterns (Kohonen, 1990).

2.2 Predictive neural networks15

As a predictive tool, the multilayer perceptron network with biases, an input layer, a
single hidden sigmoid layer, and a linear output layer (see Fig. 2) is by far the most
commonly used network topology in the field of water resources (Coulibaly et al., 1999;
Maier and Dandy, 2000). They are able to approximate any function with a finite number
of discontinuities (Cybenko, 1989; Hornik et al., 1989), provided that the training is20

sufficient. The Levenberg-Marquardt backpropagation algorithm (Hagan and Menhaj,
1994), a second-order non-linear optimization technique, is selected for the calibration
or training of the network weights, because this technique is usually faster and more
reliable than any other backpropagation variants (Tan and Van Cauwenberghe, 1999).

Generalization, which is the ability to provide accurate output values for input values25

that have never been seen by the network, is achieved by the combination of two
complementary approaches. The first approach, Bayesian regularization, relates to the
training procedure. It involves a multiple objective optimization by which both the sum
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of the squared errors and the sum of the squared weights must be minimized (MacKay,
1992; Foresee and Hagan, 1997). Bayesian regularization is particularly suited to
reduce variance errors, because the minimization constrains the weight to small values,
making less likely the possibility of large fluctuations in the response of the network
given inputs of large magnitude. An application of this approach in hydrology can5

be found in Anctil et al. (2004a). The second approach, bagging (Breiman, 1996),
relates to techniques used for constructing training data sets. Several training data
sets are created from the original data set by bootstrap, which is random picking with
replacement. Each of these training sets is employed to train a neural network. Hence
a pool of models is created, and a global predictor can be obtained by the mean of10

their estimates for a given input vector. It has been demonstrated that bagging can
reduce variance errors, since aggregation has the effect of smoothing fluctuations from
the estimates of all the models (Breiman, 1996, 2001). An application of this approach
in hydrology can be found in Canon and Whitfield (2002).

Predictive neural networks are developed for one-day ahead streamflow forecasts,15

and predictive performance is globally assessed in this application by the sum of
squared errors:

SSE =
n∑

t=1

(
Qobs,t+L −Qest,t+L

)2
(3)

the root mean squared errors:

RMSE =
(

SSE
n

)0.5

(4)
20

ant the persistence index (Kitanidis and Bras, 1980):

PERS = 1 − SSE
SSEnaive

(5)
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where SSEnaive is a scaling factor expressed as:

SSEnaive =
n∑

t=1

(
Qobs,t+L −Qobs,t

)2 (6)

In Eqs. 3 to 6, Qest,t is the neural network forecast of the observed streamflow Qobs,t
at time step t where t=1,2,. . . ,n, L is the lead time (L=1 for one day-ahead forecast),
and n is the number of time steps where model error can be calculated. A PERS value5

of 1 reflects a perfect fit between predicted and observed values, but 0 is reached
when SSE=SSEnaive, which is equivalent to saying that the rainfall-runoff model is no
better than the naı̈ve model. PERS statistics are particularly well suited for assessing
forecasts, considering that the previous streamflow is usually one of the neural network
input vectors. Negative PERS values would thus signify that the model is degrading10

the provided information.

3 Context of application

3.1 The Bas-en-Basset watershed

This study focuses on the Bas-en-Basset watershed, 3234 km2, located in the Western
Mediterranean region, in Southern France. Figure 3 provides a schematic of this wa-15

tershed. Its main stream is actually the upstream reach of the Loire River, encased in
mountain formations that separate the large hydrographic systems of the Loire, Rhone,
and Garonne rivers. The Western Mediterranean region is an interesting domain for
the study of precipitation fields, because the climate is prone to high precipitation rates,
such as daily rainfalls in excess of 200 mm. This is especially true during fall when the20

Mediterranean Sea surface temperatures are still high from the summer heating while
the onset of fall increases the chances of strong synoptic forcing. Convection also
plays an important role in a good number of these events, mostly from the Mediter-
ranean Sea itself and the complex terrain features surrounding it. Detailed analyses of
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some major Western Mediterranean rainstorms are provided by Sénési et al. (1996),
Doswell et al. (1998), and Bechtold and Bazile (2001), some of which lead to flash
floods that caused fatalities and large property damage.

Daily streamflow is observed at the Bas-en-Basset watershed outlet, and a total of 23
rain gauges, identified by diamonds in Fig. 3, have been available for the observation5

of daily rainfall from 1980 to 2000. For the purpose of the classification of precipita-
tions fields, only the days with no missing observations in the set of rain gauges are
considered. A total of 5100 days are thus available for the application, 3931 of which
being days when precipitation is observed at one or more rain gauges. The numbers
in Fig. 3 represent the average daily precipitation at each rain gauge, calculated with10

the 5100 available days.

3.2 Protocol of experiment

In a first step, the classification of the daily precipitation fields is performed using Ko-
honen neural networks. Several initial tests have been conducted to classify the pre-
cipitation fields, with the number of evaluated classes or groups set between 2 and15

12 groups. The number of available data records is the major constraint limiting the
number of groups that can be defined. For this application, the 3- and 6-group clas-
sifications are deemed adequate, being small enough to offer an easy analysis while
being large enough to allow a good discrimination of precipitation fields. The input vec-
tors for the Kohonen network are composed of the daily observations at each of the 2320

rain gauges. Prior to being fed to the network, the input vectors are normalised on a
daily basis. Hence, a given vector provides the daily precipitation observations, minus
the daily precipitation average, divided by the daily standard deviation. This normali-
sation ensures that all input vectors are on the same scale while preserving the spatial
distribution of the daily precipitation fields, which is the feature that is discriminated in25

the classification.
In a second step, multilayer perceptron neural networks are trained for the prediction

of one-day ahead streamflow values for the Bas-en-Basset watershed. The method for
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the construction of training and validation sets proposed here makes use of the Koho-
nen classification of precipitation fields. Through random selection, two-thirds of the
input vectors available are allocated for training, while the other third is left for valida-
tion. The selection process is structured so that, for any given group of precipitation
fields, two-thirds of the associated input vectors go for training and the other third is5

assigned for validation. This two-thirds/one third ratio selection is accomplished with
the 6-group classification, and the selection is such that the ratio is also respected for
the 3-group classification. A 1-group classification, where rainy days are all gathered
in one single group, is considered and used in the results section as a reference.

Three input vector configurations, which are designed to define the heterogeneity of10

precipitation fields, are tested. All configurations use streamflow at day t for the predic-
tion of streamflow at day t+1. The first configuration, which is the reference, uses the
areal mean precipitation at day t (i.e., all 23 rain gauges) as an input. In the second
configuration, the watershed is divided into two regions based on the classification of
precipitation fields, and the mean areal precipitation of each of these regions is em-15

ployed as inputs. In the third configuration, the watershed is divided into four regions,
yielding four areal mean precipitation inputs. The performance of the neural networks
is analysed with respect to each group of precipitation fields for each classification (1-,
3- and 6-group).

4 Results20

4.1 Classification of precipitation fields

The daily mean precipitation at the rain gauges presented in Fig. 3, over the whole
database and regardless of any classification, indicates higher precipitation in the north
and the south of the watershed, due to orographic effects. A figure illustrating the
standard deviation instead of the mean would show the same spatial heterogeneity25

as a result of the mountains in the north and south of the watershed. There may be
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several types of heterogeneous precipitation events on this watershed, and the goal of
the classification applied here is to identify them from day to day.

The classification into three groups (see Fig. 4) fulfills expectations on the aspect
of the discrimination of precipitation fields. Similar in format to Fig. 3, Fig. 4 gives the
daily mean precipitation at the rain gauges on rainy days, for each group of precipi-5

tation fields. The first group (Fig. 4a) contains the daily events with high precipitation
observed in the northern part of the watershed as a result of the orographic effect.
The precipitation cells during these events appear firmly located in the north, for lit-
tle precipitation is observed in the south, including in the southern mountainous part.
The third group (see Fig. 4c) includes the daily events with heavy precipitation in the10

southern part of the watershed. In all likelihood, this group gathers the precipitation
events originating from the Mediterranean Sea and the events of lumped heavy precip-
itation, as demonstrated by the high daily mean at all rain gauges on the watershed.
As for the second group (see Fig. 4b), it represents the daily low precipitation events
that are relatively homogeneous spatially. The daily mean precipitation is rather similar15

from one rain gauge to another and the standard deviations are low as well, and this
is indicative of a low spatial variability for the events of this group. The results of the
classification into three groups are satisfying in that it produces groups of precipitation
fields that are expected for the Bas-en-Basset watershed. There is one group for the
northern orographic effect, another for the southern orographic effect and heavy precip-20

itation overall, and one last group for the relatively low and homogeneous precipitation
events. On a hydrologic standpoint, it is likely that each of these groups generates a
distinct response from the watershed, and this is partly highlighted by the analysis of
the rainfall-runoff relationship.

The results of the classification into six groups confirm those of the classification into25

three groups while refining the discrimination of the daily precipitation events. Figure 5
is similar to Figs. 3 and 4, and summarizes the results of the classification into six
groups. Some groups are typical and already observed in the classification into three
groups. There is one group for the heavy precipitation events due to the mountains
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in the northern part of the watershed (Fig. 5d), and another one for heavy events due
to the mountains and the Mediterranean climate in the southern part of the watershed
(Fig. 5c). Groups 3 and 4 (Figs. 5c and d) of the six group classification include the most
extreme precipitation events and therefore the most heterogeneous in all likelihood.

As an indication of the agreement between the two classifications, Table 1 gives the5

distribution of the daily precipitation events following the classifications into three and
six groups. It is noted that almost all of the events in groups 3 and 4 of the 6-group
classification are respectively located in groups 3 and 1 in the 3-group classification.
Mostly, for all of the groups of the 6-group classification, the events are distributed
either into groups 1 and 2 or into groups 2 and 3 in the 3-group classification. There10

is no distribution into groups 1 and 3 (3-group classification) from any group of the
6-group classification. Groups 5 and 6 (Figs. 5e and f) of the 6-group classification
show not only a north-south variation in the location of the precipitation cell, but also
an east-west variation as well, which cannot be noticed in the 3-group classification.
Groups 1 and 2 (Figs. 5a and b) in the 6-group classification should be considered as15

containing relatively low and homogeneous precipitation events.
As a general rule for this watershed, the heavier is the precipitation event, the more

heterogeneous it is susceptible to be. This is confirmed by Fig. 6, which show the
distribution of the (a) mean and (b) standard deviation of the precipitation events ac-
cording to each group for the 6-group classification. Similar results are obtained for the20

3-group classification. There is a clear distinction between group 3, which contains the
heaviest and most heterogeneous daily precipitation events, and all the other groups.
The events of group 3 are very likely to produce a response in terms of streamflow
production that may significantly differ from that of the other groups. The other groups
may well each generate a distinct response from the watershed, although it might not25

be easy to clearly distinguish each one from the others. Assessing the response of the
watershed to precipitation events is implicitly accomplished here through the analysis
of the performance of rainfall-runoff models with respect to the groups identified in both
classifications.
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4.2 Rainfall-runoff relationship

Pertinent input vectors for Bas-en-Basset one day-ahead streamflow forecasts are the
streamflow and the precipitation of the previous day. These have been identified in a
step-wise manner, as in Anctil et al. (2004b), from a pool of candidates consisting of
streamflow, mean areal rainfall and potential evapotranspiration with time-lags of one5

to three days. The goal of input selection is to maximize the PERS for the validation
dataset (one third of the database), while the network weights are optimized for the
training dataset (two thirds of the database). At this stage of input selection, the number
of hidden neurons is set at 5. After the input selection, the number of hidden neurons
is optimized by trial and error from 2 to 35. The network architecture and the number of10

parameters (weights and drifts) to calibrate for each of the models are given in Table 2.
As for the use of precipitation inputs, three cases are considered. The first case

employs the areal mean precipitation, calculated with all 23 rain gauges. The other
two cases divide the watershed into 2 and 4 regions, respectively, and the mean pre-
cipitation of each of the regions are used as inputs. Figure 7 illustrates these regions.15

In case 2 (2 mean precipitation inputs), the southern region includes the rain gauges
with the heaviest precipitation measurements observed. In case 3 (4 mean precipi-
tation inputs), the regions are set to account for both the north-south and east-west
precipitation field variability observed during the classification. Case 1 represents the
reference while cases 2 and 3 constitute attempts to improve rainfall-runoff modelling20

performance. One rainfall-runoff model is developed for each case, and their perfor-
mance is summarized in Table 2 with respect to SSE, RMSE and PERS. The results
show that adding precipitation inputs does not lead to improved performance. A priori,
performance decreases as the network becomes less parsimonious, although a final
conclusion can only be made after modelling performance is analyzed with respect to25

the groups of precipitation fields.
Table 3 details model performance with respect to both the modelling cases (1, 2

or 4 precipitation inputs) and the groups from Kohonen classifications, for all three
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performance indicators (SSE, RMSE and PERS). The best modelling scenarios are
those that yield an SSE and a RMSE that are closer to 0 and a PERS that is closer to
1. The situation where no classification is performed, gathering all precipitation fields in
one single group, is also given in Table 3 for comparison. Note that group 0 represents
the days when no precipitation is recorded at any of the rain gauges.5

In terms of the SSE, group 3 (i.e., southern orography and heavy precipitation) in
both classifications is the highest, with group 1 in the 3-group classification and group 4
in the 6-group classification (i.e., northern orography) possessing the second largest
SSE on most occasions. The RMSE obviously confirms the conclusion about the SSE,
as it translates the sum of errors into an average error associated to a single day. It is10

to be expected that lumped conceptual models are not able to take into account pre-
cipitation heterogeneity over a watershed. The results of Table 3 exemplify this with
the multilayer perceptron neural networks (lumped, although not conceptual models).
The SSEs and RMSEs are typically small for situations with relatively homogeneous
precipitation fields spatially (e.g., group 2 in the 3-group classification, and groups 115

and 2 in the 6-group classification), while they are quite high for situations with moder-
ately to highly heterogeneous precipitation fields (e.g., groups 1 and 3 in the 3-group
classification, and groups 3 and 4 in the 6-group classification). The SSEs and RMSEs
must also be weighted with respect to the amount of precipitation and streamflow level
(e.g. group 3 in both the 3- and 6-group classifications), as they usually become larger20

as the average precipitation and streamflow increase.
Larger SSEs and RMSEs do not necessarily translate into poor performance in terms

of PERS. The neural network models for the situation involving group 3 precipitation
fields for both classifications possess large SSE and RMSE compared with the other
groups, but also a large PERS compared with the other groups. It indicates that neural25

networks are far better alternative than the reference model for PERS (i.e., the naı̈ve
model) in the cases of highly heterogeneous precipitation fields, compared with cases
of relatively homogeneous precipitation fields or cases where no precipitation is ob-
served. It is expected, for any hydrological model, that large errors are produced in the
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events of large streamflow or precipitation.
The use of more than one precipitation input, either 2 or 4, has been justified by

the expectation of improving modelling performance, although the results in Table 3
do not show this to be the case. Improvement is noticed (e.g., group 2 in the 3-group
classification or group 5 in the 6-group classification), but it is only marginal and offset5

by the degradation of performance for the group with the largest SSE (i.e., group 3 in
both classifications). The definition of good inputs is critical for modelling performance,
and the division into regions as performed here has been subjective. The use of a
more objective approach, based on a systemic exploration of the combinations of rain
gauges available for the calculation of areal mean precipitation, is recommended here.10

Another alternative for modelling improvement would be to develop a distinct model for
each of the groups, which is feasible if the database is large enough to accommodate
this community of models. The preliminary tests performed on this watershed indicate
that the available database needs to be larger, as no significant improvement is noticed.
In the present situation, input parsimony is advantageous to the performance of the15

networks.
With respect to the advantage of multilayer perceptron neural networks, the results

demonstrate that they have a capacity to accommodate heterogeneous precipitation
fields. The training process may generate a network topology that can distinguish
between precipitation events, even if only two inputs, streamflow and mean areal pre-20

cipitation, are given. In the case of Bas-en-Basset, it can be assumed that two signifi-
cantly different precipitation fields exist, that is, those in group 3 for both classifications
(southern orography and heavy precipitation) and all the others combined (Fig. 6). In
a classification tree, only one input is necessary to separate a data domain into two
groups (e.g., smaller or bigger than a given threshold), and this is why only one precip-25

itation input may be enough to differentiate between two different precipitation fields in
the Bas-en-Basset watershed. In the situation where more than two precipitation fields
are present, more than two precipitation inputs would be necessary to give the network
topology a chance to make a distinction among the fields.
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5 Conclusion

The goal of this work has been to accomplish a classification of precipitation fields so
as to distinguish between homogeneous and heterogeneous precipitation events and
hence collect information to better support rainfall-runoff modelling efforts on the Bas-
en-Basset watershed from which the precipitation data come from. Kohonen neural5

networks are used as the classification tool while multilayer preceptron neural networks
are employed as lumped models for one-day ahead streamflow prediction. The results
of the classification validate the use of the Kohonen network as a classifier of precipita-
tion fields. The classification generates groups of precipitation fields that are expected
to exist on the Bas-en-Basset watershed considering the general climate patterns of10

the region and the physical constraints (orography). The classification can help after-
ward to refine the analysis of the performance of rainfall-runoff models. Performance
can be analysed with respect to each group of precipitation fields. The performance
analysis accomplished on the Bas-en-Basset watershed has shown that rainfall-runoff
models produce the largest errors for cases of moderately to highly heterogeneous15

precipitation fields, which is to be expected of conventional hydrological models. On
the basis of this analysis with respect to group of precipitation fields, solutions such as
the addition of precipitation inputs or the development of specific models per group can
be envisioned. The use of more than one precipitation input has not led to performance
improvement in rainfall-runoff modelling for this application. With respect to the advan-20

tage of multilayer perceptron neural networks, it can be said that they can account for
heterogeneous precipitation, providing that enough inputs are given to the models to
allow for the distinction between the existing precipitation fields. In the case of the Bas-
en-Basset watershed, it can be assumed that only two significantly distinct precipitation
fields actually exist, and consequently only one precipitation input is required. Further25

development on this application would involve the exploration of combinations of rain
gauges from among the 23 available that would be better able to represent precipitation
on the watershed and lead to improved rainfall-runoff modelling performance.
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Table 1. Discrimination of precipitation fields with respect to the classifications into 3 and 6
groups.

3-group 6-group classification
classification 1 2 3 4 5 6 Total

1 270 3 0 815 249 0 1337
2 299 525 1 4 337 233 1399
3 1 101 755 0 2 336 1195

Total 570 629 756 819 588 569 3931
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Table 2. Summary of performance for the three cases of rainfall-runoff modelling according to
precipitation inputs.

Number of Network Number of SSE RMSE PERS
precipitation inputs architecture parameters (mm2) (mm)

1 2-7-1 29 171.7 0.316 0.795
2 3-6-1 31 179.5 0.323 0.785
4 5-5-1 36 195.3 0.337 0.767
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Table 3. Summary of rainfall-runoff modelling performance per group of precipitation fields.

Group No classification 3-group classification 6-group classification
number SSE RMSE PERS SSE RMSE PERS SSE RMSE PERS

(mm2) (mm) (mm2) (mm) (mm2) (mm)

One precipitation input
0 5.2 0.112 0.680 5.2 0.112 0.680 5.2 0.112 0.680
1 166.6 0.357 0.797 19.6 0.215 0.704 4.0 0.155 0.718
2 22.5 0.215 0.809 4.4 0.140 0.559
3 124.5 0.559 0.804 117.1 0.671 0.810
4 15.6 0.237 0.705
5 17.3 0.303 0.835
6 8.1 0.206 0.656

Two precipitation inputs
0 5.2 0.113 0.675 5.2 0.113 0.675 5.2 0.113 0.675
1 174.2 0.365 0.788 20.5 0.219 0.690 4.8 0.169 0.664
2 14.4 0.172 0.878 4.8 0.147 0.513
3 139.3 0.591 0.781 131.2 0.710 0.787
4 15.6 0.237 0.705
5 9.5 0.224 0.909
6 8.2 0.208 0.649

Four precipitation inputs
0 5.0 0.110 0.692 5.0 0.110 0.692 5.0 0.110 0.692
1 190.3 0.381 0.768 22.1 0.228 0.667 5.9 0.187 0.587
2 16.4 0.184 0.860 3.5 0.125 0.646
3 151.9 0.617 0.761 144.4 0.745 0.765
4 18.0 0.254 0.661
5 9.1 0.219 0.913
6 9.4 0.222 0.599

Note: the 0 group represent the days when no precipitation is recorded at any of the rain
gauges. 222
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 Fig. 1. Schema of the Bas-en-Basset watershed, with precipitation average at each of the rain
gauges (including non-rainy days).
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 Fig. 2. Average daily precipitation at every rain gauge, per group, for the classification of
precipitation fields into 3 groups.
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Fig. 3. Average daily precipitation at every rain gauge, per group, for the classification of
precipitation fields into 6 groups.
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Fig. 4. Distribution of the daily mean precipitation (a) and daily standard deviation of precipita-
tion (b) with respect to each group for the classification into 6 groups.
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(a) (b)

 
Fig. 5. Division of the watershed into (a) two and (b) four regions for the determination of
precipitation inputs for the rainfall-runoff models.
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